The nif gene operon of the methanogenic archaeon Methanococcus maripaludis.

نویسندگان

  • P S Kessler
  • C Blank
  • J A Leigh
چکیده

Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5' to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis.

The glnA gene in the domains Bacteria and Archaea encodes glutamine synthetase, a universally distributed enzyme that functions in ammonia assimilation and glutamine synthesis. We investigated the regulation and function of glnA in the methanogenic archaeon Methanococcus maripaludis. The deduced amino acid sequence of the gene demonstrated its membership in class GSI-alpha of glutamine syntheta...

متن کامل

Impact of translational selection on codon usage bias in the archaeon Methanococcus maripaludis.

Patterns of codon usage have been extensively studied among Bacteria and Eukaryotes, but there has been little investigation of species from the third domain of life, the Archaea. Here, we examine the nature of codon usage bias in a methanogenic archaeon, Methanococcus maripaludis. Genome-wide patterns of codon usage are dominated by a strong A + T bias, presumably largely reflecting mutation p...

متن کامل

Nitrogen fixation in methanogens: the archaeal perspective.

The methanogenic Archaea bring a broadened perspective to the field of nitrogen fixation. Biochemical and genetic studies show that nitrogen fixation in Archaea is evolutionarily related to nitrogen fixation in Bacteria and operates by the same fundamental mechanism. At least six nif genes present in Bacteria (nif H, D, K, E, N and X) are also found in the diazotrophic methanogens. Most nitroge...

متن کامل

Regulatory response of Methanococcus maripaludis to alanine, an intermediate nitrogen source.

In the methanogenic archaeon Methanococcus maripaludis, growth with ammonia results in conditions of nitrogen excess. Complete repression of nitrogen fixation (nif) gene transcription occurs, and glutamine synthetase (glnA) gene transcription falls to a basal constitutive level. In addition, ammonia completely switches off nitrogenase enzyme activity. In contrast, growth with dinitrogen as the ...

متن کامل

Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis.

Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 6  شماره 

صفحات  -

تاریخ انتشار 1998